Chaotic Dynamical Systems as Automata
نویسنده
چکیده
We discuss the replacement of discrete maps by automata, algorithms for the transformation of finite length digit strings into other finite length digit strings, and then discuss what it required in order to replace chaotic phase flows that are generated by ordinary differential equations by automata without introducing unknown and uncontrollable errors. That question arises naturally in the discretization of chaotic differential equations for the purpose of computation. We discuss as examples an autonomous and a periodically driven system, and a possible connection with cellular automata is also discussed. Qualitatively, our considerations are equivalent to asking when can the solution of a chaotic set of equations be regarded as a machine, or a model of a machine.
منابع مشابه
Additive One-Dimensional Cellular Automata are Chaotic According to Devaney's Definition of Chaos
We study the chaotic behavior of a particular class of dynamical systems: cellular automata. We specialize the definition of chaos given by Devaney for general dynamical systems to the case of cellular automata. A dynamical system (X,F) is chaotic according to Devaney’s definition of chaos if its ~sition map F is sensitive to the initial conditions, topolo~cally transitive, and has dense period...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملDynamical Behavior of Cellular Automata
Cellular Automata are simple computational models which can be leveraged to model a wide variety of dynamical systems. Composed of a lattice of discrete cells that take finite number of states based on previous iterations these models differ greatly from dynamic systems that vary continuously in space or time. However given their ability to model many of continuous systems, it could be postulat...
متن کاملA Modular Dynamical Cryptosystem Based on Continuous-Interval Cellular Automata
This paper presents a new cryptosystem based on chaotic continuous-interval cellular automata (CCA) to increase data protection as demonstrated by their flexibility to encrypt and decrypt information from distinct sources. Enhancements to cryptosystems are also presented including (i) a model based on a new chaotic CCA attractor, (ii) the dynamical integration of modules containing dynamical sy...
متن کاملDynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013